EPREUVES

Mathématiques

2006

1) Résoudre dans \mathbb{R} l'équation : $e^x - e^{-x} = 0$

$$f(x)=\frac{e+e^{-x}}{e^x-e^{-x}}$$
 et (Cf) sa courbe représentative dans un repère

- 2) Soit la fonction f définie par orthonormé d'unité 2 cm.
- a) Déterminer le domaine de définition de f, noté Df.
- b) Montrer que pour tout $x \in Df$, f(-x) = -f(x). En déduire que l'orine du repère est le centre de symétrie de (Cf).
- II) Dans la suite du problème, on étudiera la fonction f sur $]0, +\infty[$
- 1) a) Calculer la limite de f en o à droite.

$$f(x) = \frac{1 + e^{-2x}}{1 - e^{-2x}}$$

b) Montrer que f(x) peut s'écrire sous la forme :

 $f(x) = \frac{1 + e^{-2x}}{1 - e^{-2x}};$ en déduire la limite de f en + ∞

- c) Quelles sont les asypmtotes à la courbe Cf?
- $f'(x) = \frac{-4}{(e^x e^{-x})^2};$ en déduire le sens de variation de f sur $]0, +\infty[$
- 3) Donner le tableau de variation de f sur $]0, +\infty[$
- 4) Construire la courbe (Cf) et ses asmptotes sur $]0, +\infty[$

En utilisant la question 1)2b; construire (Cf) sur Df.

III)

soit A le domaine limité par (Cf) et les droites d'équations :

x=1, x=2 et l'axe des abscisses. On pose $u(x) = e^x - e^{-x}$

$$f(z) = \frac{u'(z)}{u(z)}.$$
 1) Montrer que En déduire une primitive F de f sur $]0, +\infty[$

2) Exprimer en cm une valeur approchée à 10 prés de l'aire du domaine A.

2005

Soit f la fonction définie par

$$f(x) = 2x + 1 - \ln(\frac{x}{x-2})$$

- (Cf) sa courbe représentative dans le plan muni d'un repère ortonormal (o, \veci,\vecj) (unité graphique 1 cm).
- 1) Déterminer le domaine de définition Df de f.
- 2) Calculer les limites aux bornes de l'ensemble de définition.
- 3) Calculer f'(x) où f' est la fonction dérivée de f. Déterminer son signe et en déduire le tableau de variation de f.
- 4) Montrer que le point I (1;3) est centre un de symétrie de la courbe (Cf).
- 5) Montrer que la droite (Δ) d'équation y=2x+1 est une asymptote à la courbe de f.
- 6) Etudier la position de la courbe par rapport à l'asymptote oblique (Δ).
- 7) Tracer (Cf) la courbe représentative de f.

2004

1) Résoudre dans
$$R^2$$

$$\begin{cases} 2X - Y = 3 \\ 3X + 4Y = 3 \end{cases}$$

2) En déduire la résolution dans \mathbb{R}^2 les systèmes suivants

a)
$$\begin{cases} 2e^x - e^y = 7 \\ 3e^x + 4e^y = 5 \end{cases}$$

$$\begin{cases} 2lnx - lny = 7\\ 3lnx + 4lny = 5 \end{cases}$$

2004: fonction

Soit g la fonction définie sur $\mathbb{R}^2 \setminus par$

$$g(x) = \frac{e^x + e^{-x}}{2} - \frac{5}{4}$$

On désigne par (Cg) sa courbe dans un repère orthonormal (o, \vec{i} , \vec{j}) (unités ; 4 cm sur (ox) et 2 cm sur (oy).

- 1) Déterminer $\lim_{x\to+\infty}[g(x)]$ et $\lim_{x\to-\infty}[g(x)]$
- 2) Montrer que g est paire. Qu'en déduire pour la courbe (Cf). ?
- 3) Soit g' la fonction dérivée de g

$$g\prime(x) = \frac{(e^x-1)(e^x+1)}{2e^x}$$

a) Montrer que

$$\label{eq:epsilon} \epsilon^{-x} = \frac{1}{\epsilon^x}$$
 On rappelle que

b) Montrer que g'(x) est du signe $(e^x - 1)$

Dresser le tableau de variation de g.

- 4) Déterminer les points d'intersection de (Cf) avec l'axe (ox).
- 5) Déterminer les équations des tangentes à (Cf) aux points d'abscisses respectives $x = \ln 2$ et $x = -\ln 2$
- 6) a) Construire (Cf) et les tangentes

b) Déterminer l'aire du domaine délimité par la courbe (Cf), l'axe (ox) et les droites d'équations respectives ($x = -\ln(2)$) et ($x = \ln(2)$).

2003 exo1

Soit f la fonction numérique définie par $f(x) = x \ln x - 3x$

- 1) déterminer l'ensemble de définition de $\ ^f$ noté $\ ^{Df}$
- 2) Calculer $\lim_{x\to 0^+} f(x) = \lim_{x\to +\infty} f(x)$
- 3) Calculer f'(x), en déduire le sens de variations de f . Puis dresser le tableau de variations de f
- 4) Donner les équations des tangentes $(T_1), (T_1)$ à la courbe représentative (C_f) de f aux points d'abscisses respectives 1 et
- 5) Tracer $^{(T_1),(T_1)}$ et la courbe $^{(C_f)}$ dans un repère orthogonal en prenant pour unités 0,5 cm en abscisse et 1 cm en ordonnée.
- 6) Calculer la dérivée de la fonction g définie sur \mathbb{R}_+^* par $g(z) = \frac{z^2 \ln z}{2}$.

En déduire une primitive de f sur \mathbb{R}_+^*

7) Calculer l'aire A de la portion de plan comprise entre la courbe $^{(C_f)}$, l'axe des abscisses et les droites d'équations respectives $^x=1$ et $^x=\epsilon^3$

2003exo2

 $P(x) = x^4 + 2x^3 - 16x^2 - 2x + 15$ Soit le polynôme

- 1) Vérifier que 1 et -1 sont des racines de P(x).
- 2) a) Factoriser P(x)
- b) Résoudre dans \mathbb{R} , l'équation P(x)=0
- 3) En déduire la résolution dans \mathbb{R} des équations

$$(\ln x)^4 + 2(\ln x)^3 - 16(\ln x)^2 - 2\ln x + 15 = 0$$

$$e^{3x} + 2e^{2x} - 16e^x - 2 + 15e^{-x} = 0$$

2002

Soit la fonction numérique définie par :

$$f(x) = 2 + \frac{1}{e^x - 1}$$

- 1) Déterminer l'ensemble de définition de la fonction f et étudier les limites aux bornes de cet ensemble.(01 point)
- 2) a) Déterminer la dérivée f' de la fonction f.(01 point)
- b) Etudier le sens de variation de la fonction f(O2 point)
- c) Dresser le tableau de variations de la fonction f.(0,5)
- 3) On appelle ($\overset{C}{}$) la courbe représentative de f dans le plan muni d'un repère orthonormal (o, $\overset{i}{}$, $\overset{j}{}$) (Unité : 2 cm)
- a) Trouver une équation de la tangente (T) à la courbe (C) au au point d'abscisse x º = ln2 (0,5 point)
- b) Montrer que le point A(0; $\frac{3}{2}$) est centre de symétrie pour (C) (01 point)
- c) Déterminer le point d'intersection il de la courbe (C) avec l'axe des abscisses. (01 point)

- 4) Tracer la droite (T) \ et la courbe (C) dans le repère (o, \vec{i} , \vec{j}). (01 point)
- 5) a) Montrer que la fonction g définie par $g(x) = 2x + \ln |e^{-x} 1|$ est une primitive de f sur [1, 5] (01 point)
- b) Calculer l'aire en cm du domaine délimité par l'axe des abscisses, la courbe (C) et les droites d'équations respectives x = 1 et x = 5. (01).

soit f la fonction définie sur \mathbb{R} par : $f(x) = x - 2 + \frac{1}{e^x}$ et (C) sa courbe représentative dans le plan muni d'un repère orthonormal (o, \vec{i} , \vec{j}). L'unité de longueur est 2 cm.

- 1) a) Calculer la limite de f en + $^{\infty}$. On admet que $\lim_{z\to-\infty}f=+\infty$
- $f(x) = x \left(1 \frac{2}{x} + \frac{1}{xe^x} \right)$ b) Vérifier que, pour tout réel x non nul,
- c) En déduire la limite de f en ∞ . (On suppose que $\lim_{x\to-\infty}xe^x=0$
- 2) a) Etudier les variations de f.
- b) Dresser le tableau de variations de f
- 3) a) Calculer $\lim_{x \to -\infty} (f(x) (x-2))$
- b) En déduire que la droite (D) d'équation y = x 2 est une asymptote oblique à (C) quand x tend vers $+\infty$
- 4) Etudier, suivant les valeurs de x, la position de (C) par rapport à (D).
- 5) Tracer (C) et (C) dans le même repère.
- 6) a) Trouver une primitive F de f sur \mathbb{R}

b) Calculer l'aire en cm du domaine limité par les droites d'équations respectives : x = 0 et x = 1 et y = 0 et la courbe (C)

2000

 $f(x)=\frac{e^x+2}{e^x-2}$ Soit f la fonction définie par 2 cm. e^x+2 et sa courbe représentative dans un repère orthonormal unité

- 1) a) Quel est l'ensemble de définition de f? On le notera D.
- b) Calculer la limite de f en ∞ . En déduire une asymptote $\ a$ (C).

$$f(x) = \frac{1+2e^{-x}}{1-2e^{-x}}$$

- c) Vérifier que pour tout x de D,
- c) Démontrer que la droite d'équation x=ln2 est également une asymptote à la courbe (C)
- 2) Déterminer f'(x), son signe et dresser le tableau de variation de f.
- 3) Tracer la courbe (C).

$$f(x) = a + \frac{be^x}{e^x - 2}$$
 4) a) Déterminer les nombres réels a et b tels que pour tout x x de D ;

- 4) a) Determiner les nombres reels a et b tels que pour tout $x \times de D$;
- b) En déduire l'aire de la partie du plan comprise entre (C), l'axe des abscisses, les droites d'équation x=2 et x=3.

Probabilité

2006

Des observateurs estiment que les huit équipes suivantes sont favorites pour la coupe du monde 20006 : le Brésil, l'Argentine, l'Allemagne, l'Italie, la Tchéquie, la Hollande, la Grande Bretagne et la France. On s'intéresse aux quatre premières places dans l'ordre.

- 1) De combien de façons peut-on classer les huit équipes pour les quatre places?
- 2) Calculer la probabilité des évènements suivants :
- a) A: « Une équipe d'Amérique du Sud remporte la coupe »
- b) B: « Deux équipes Européennes sont première et deuxième »
- c) C: « Les deux premières équipes ne sont pas du même continent ».

2005

Le foyer d'un lycée doit élire son bureau composé d'un président, d'un vice président et d'un trésorier.

Parmi les 20 candidats se trouvent 12 filles dont 5 en terminale et 8 garçons dont 4 en terminale. On suppose que les candidats ont la même chance d'être élu.

Calculer la probabilité des événements suivants :

A-« Les personnes choisies sont de même sexe. »

B-« Le président est un garçon et les autres sont des filles ».

C-« Le bureau est constitué de deux filles et d'un garçon. »

E-« Le bureau comprend un président et un vice président de sexes différents. »

D-« Le bureau comprend au moins un élève de terminale ».

2002

Une urne contient 7 jetons portant les lettres S, N, G, H, O, E et R. On suppose qu'un mot est un assemblage de lettres distinctes ou non, ayant un sens ou non.

- 1) On tire successivement 5 jetons de l'urne, en remettant aprés chaque tirage le jeton tiré dans l'urne. On note dans l'ordre les jetons tirés pour former un mot de 5 lettres.
- a) Déterminer la probabilité de former un mot commençant par une voyelle (1 point)
- b) Déterminer la probabilité de former un mot commençant par S, se terminant par R et contenant exactement une voyelle.(01,5)
- 2) On tire successivement 7 jetons de l'urne, sans remettre le jeton tiré dans l'urne et on les aligne dans l'ordre du tirage pour former un mot de 7 lettres.
- a) Déterminer la probabilité de tirer un mot commençant par ne voyelle et se terminant par une voyelle. (01,5)
- b) Déterminer la probabilité de former le mot SENGHOR (01 point)

Un dé dont les faces sont numérotées de 1 à 6 est truqué de telle manière que l'apparition du numéro 5 est deux fois « plus probable » que l'apparition de chacun des autres numéros. On notera Pi la probabilité d'apparition du numéro i(i=1, 2,3,..., 6).

1) Calculer la probabilité d'apparition de chaque numéro.

 $_{1}=P_{2}=P_{3}=P_{4}=P_{6}=\frac{1}{7}$ $P_{5}=\frac{2}{7}$. ion on suppose que P

2) Dans cette question on suppose que P

Calculer les probabilités des évènements suivants :

a - « Obtenir un numéro pair »

b - « Obtenir un numéro impair ».

2000

Une urne contient 3 boules jaunes, cinq boules rouges et deux boules vertes.

- A) On tire simultanément trois boules de l'urne.
- 1) Quelle est la probabilité d'avoir un tirage unicolore ?
- 2) Quelle est la probabilité d'avoir exactement deux boules de même couleur ?
- B) On tire successivement sans remise trois boules.
- 1) Quelle est la probabilité d'avoir des boules rouges uniquement ?
- 2) Quelle est la probabilité de ne pas avoir une boule verte au deuxième tirage?

Statistique

2000

2002

une étude du pourcentage d'entreprises équipées en informatique d'un pays a donné :

Année A	1970	1975	1980	1985	1990	1995	
T en %	10	25	41	60	69	80	86

Pour simplifier les calculs on pose

$$N = \frac{A - 1970}{5}$$

1. Compléter le tableau suivant :

N							
Т	10	25	41	60	69	80	86

- 2. Représenter le nuage de points de la série statistique (NT) (on mettra N en abscisse, T en ordonnée) (01 point)
- 3) Calculer les coordonnées du point moyen G et le placer sur la figure. (01 point)
- 4) Donner une équation de la droite de régression de N en T par la méthode des moindres carrées. (01 point)
- 5) Indiquer à partir de quelle année, on peut estimer que 95% des entreprises de ce pays seront équipées en informatique. (01 point).

Le tableau ci-dessus donne le relevé des 6 mois précédents, d'une entreprise ; X est la quantité en tonnes, de matière première utilisée, Y est le chiffre d'affaire en millions de francs.

Numéros du mois	1	2	3	4	5	6
х	0,9	1,2	0,6	0,5	1,4	1
У	37	40	33	33	41	35

1) Représenter le nuage de points et le point moyen G

2)

- a) Calculer la covariance Cov (X,Y) de X et Y.
- b) Calculer le coefficient de corrélation de X et Y.

3)

- a) Déterminer une équation de la droite de régression de Y en en X et la représenter dans le même repère.
- b) Déduire une estimation du besoin en matière première pour un chiffre d'affaires de 49 000 000F.

2000

On donne la série statistique suivante à deux variables :

Xi	1,2	1,4	1,6	1,8	2
Yi	13	12	14	16	а

Par la méthode des moindres carrées, on a obtenu l'équation de la droite de régression de y en x, à savoir : y = 9x + 0.6

- 1) Calculer
- 2) Exprimer $\frac{\overline{Y}}{}$ en fonction de a
- 3) En utilisant 1) et 2), montrer que a=20
- 4) Calculer le coefficient de corrélation linéaire de x en . La corrélation est-elle forte ?
- 5) Estimer la valeur de y pour x = 3,2

L'étude du commerce extérieur d'un pays de 1990 à 1996 pour les importations et les exportations exprimés en milliards de francs donne le tableau suivant :

Importation X	2,8	3,2	3,8	4,4	6,4	5,7	7,4
Exportation Y	2	2,6	3,2	3,8	5	5,5	6,5

1. Calculer:

$$X = Y$$

- a) les moyennes et .
- b) les variances V(X) et V(Y)
- c) les écarts types $\sigma(X)$ et $\sigma(Y)$
- 2) Calculer le coefficient de corrélation entre X et Y.

Existe t-il une corrélation entre les importations et les exportations.

1998

Le tableau suivant donne l'évolution de cinq en cinq ans du taux d'équipement en informatique des entreprises d'un pays (en pourcentage).

Année	1965	1970	1975	1980	1985	1990	1995

Rang x_i	0	1	2	3	4	5	6
Taux ^y i %	10	25	41	60	69	80	86

- 1) Représenter le nuage de point de la série statistique ($^{x_i, y_i}$).
- 2) Calculer les coordonnées du point moyen G et la placer sur la figure précédente.
- 3) Donner une valeur approchée à 10 prés par défaut du coéfficient de corrélation linéaire de la série statistique (x_i, y_i).
- 4) Déterminer l'équation de la droite de régression ($^{\Delta}$) de x en y par la méthode des moindres carrés ; représenter ($^{\Delta}$) sur la figure précédente.
- 5) Trouver l'ordonnée du point H de ($^{\Delta}$) d'abscisse x=7. Que peut-on en déduire pour le taux d'équipement en informatique des entreprises du pas à la fin de ce siècle ?

Suite

2006

Pour honorer ses engagements, un fournisseur contracte un prêt de 1 562 500 F CFA auprès d'une banque avec un taux d'intérêt fixe de 20 %.

- 1) Combien doit-il rembourser?
- 2) Il doit rembourser cette somme en n mensualités (n $^{\geq 1)}$

 $Au\ premier\ versement\ il\ donne\ 300\ 000F\ CFA\ et\ pour\ chacun\ des\ versements\ suivants\ il\ donne\ 25\ 000$

 $i\bar{A}$ ine

F de moins que le précédent. Soit U n le versement du n mois.

- a) Calculer U 2 et U 3.
- b) Montrer de (U ¬) est une suite arithmétique dont on pr\'ecisera la raison et la premier terme.

- c) Exprimer U n en fonction de n.
- 3) En combien de mois le prêt sera t-il couvré?

Suite à l'invasion des criquets pélerins dans la zone du delta, la direction de la protection des végétaux (DPV) lance sa campagne de lutte ;

- 1) La DPV envisage de diminuer chaque jour la surface infestée de 8%. Celle-ci était au départ $U_0=2000$ (en hectare).
- a) Calculer U₁ et U₂ les surfaces infestées restantes au premier et au deuxième jour.
- b) Exprimer en fonction de n la surface infestée restante n jours aprés le début de l'opération.
- c) Calculer le nombre de jours nécessaires pour traiter la moitié de la surface infestée.
- 2) La DPV a utilisé au premier jour de lutte P₁=1000 (en litre) de pesticide et décide d'ajouter chaque jour 400 litres de plus que le jour précédent.
- a) Calculer les quantités P₁ et P₂ de pesticide utilisées au deuxième et troisième jour de lutte.

iÄine

- b) Exprimer Pⁿ, la quantité de pesticide utilisée le n jour, en fonction de n.
- c) Quelle est la quantité totale de pesticide utilisée aprés 20 jours de traitement.

Le litre de pesticide coute 18000 francs. A combien s'élève la somme dépensée en pesticide durant 20 jours de lutte

2004

Pendant l'hivernage, aprés de fortes pluies, l'eau a inondé 1 000 000 ha de terres cultivables.

Sachant que pendant la décrue, l'eau « libère » chaque jour 10 % de la surface couverte d'eau la veille :

On note S_0 la la surface initialement occupée par l'eau et S_n la surface occupée le n jour de décrue.

- 1) Déterminer la surface « occupée » le $\frac{1}{1}$ jour, le $\frac{2}{1}$ jour et le $\frac{3}{1}$ jour. Ces surfaces seront notées respectivement S_1 ; S_2 ; et S_3 .
- 2) Soit S_n la surface « occupée » le 1 jour et S_{n-1} la surface « occupée » le jour précédent.
- a) Exprimer S_n en fonction de S_{n-1} .
- b) En déduire la nature de la suite $(S_n)n \in N$
- c) Exprimer S_n en fonction de n.
- 3) Au bout de combien de jours la surface inondée sera-t-elle inférieure à la moitié de la surface initialement inondée ?

On donne

$$ln(0,5) \approx -0.69$$

2003

Amadou désire acheter une voiture qui, au 1 janvier 1993, coute 9 000 000 F CFA.

N'ayant à sa disposition que 7 700 000 F CFA et ne voulant pas prendre de crédit, il décide de placer cette somme. Un organisme financier lui propose un placement au taux annuel de 7 % intérêts composés.

On se propose de déterminer en quelle année, Amadou pourra acheter cette voiture.

Pour tout entier naturel n, on note U n le capital dont dispose Amadou au 1 janvier de l'année (1993+n).

- 1) Calculer U 1 U 2
- 2) a) Montrer que la suite $(U^n)^n \in \mathbb{N}$ est une suite géométrique dont on précisera la raison et le premier terme.
- b) Exprimer U n en fonction de n.

3) On admet que le prix de la voiture que veut acheter Amadou augmente régulièrement de 3\% au 1 janvier de chaque année.

Pour tout entier naturel n, on note V_n le prix de la voiture au 1^{er} janvier de l'année (199"+n) Exprimer V_n en fonction de n.

4) Calculer, à partir de quelle année, Amadou pourra acheter la voiture. (On pourra utiliser la fonction ln).