CONCOURS D'ENTRÉE A L'EAMAC

SESSION DE MAI 2013 EPREUVE DE MATHEMATIQUES POUR LE CYCLE INGENIEUR DUREE: 4 HEURES

EXERCICE 1: (6 points)

On jette 3 fois un dé cubique parfait dont les faces sont numérotées de 1 à 6. On note a, b, c les numéros obtenus. Soit $Q(x) = ax^2 + bx + c$.

Déterminer la probabilité de chacun des évènements suivants:

A: Q(x) admet une racine réelle. (2 points)

B: Q(x) admet deux racines réelles distinctes. (2 points)

C: Q(x) admet aucune racine réelle. (2 points)

EXERCICE 2: (5 points)

Montrer que l'intégrale généralisée

$$I = \int_{0}^{+\infty} \frac{\sin x}{x^{\alpha}} dx$$

converge si et seulement si $0 < \alpha < 2$.

EXERCICE 3: (5 points)

1°) Montrer que
$$\int_{0}^{\frac{\pi}{2}} (\cos t)^{2n+1} dt = \frac{2^{2n} (n!)^{2}}{(2n+1)!}$$
 (1 point).

2°) Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur $[0, +\infty[$ par:

$$f_n(t) = \begin{cases} (1 - \frac{t^2}{n})^n & \text{si } t \in [0, \sqrt{n}] \\ 0 & \text{si } t \in]\sqrt{n}, +\infty[\end{cases}$$

Etudier la convergence simple de (f_n) sur $[0, +\infty]$ (1 **point**)

3°) Montrer que:

$$\lim_{n \to +\infty} \left(\int_{0}^{\sqrt{n}} \left(1 - \frac{t^2}{n} \right)^n dt \right) = \int_{0}^{+\infty} e^{-t^2} dt$$
 (1 point)

4°) Montrer que:

$$\int_{0}^{\sqrt{n}} \left(1 - \frac{t^{2}}{n}\right)^{n} dt = \sqrt{n} \int_{0}^{\frac{\pi}{2}} (\cos t)^{2n+1} dt$$
 (1 point)

5°) En déduire que :

$$\int_{0}^{+\infty} e^{t^2} dt = \frac{\sqrt{\pi}}{2}$$
 On admettra que : $n! \cong \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. (1 point)

EXERCICE 4: (4 points)

On pose
$$f(x) = \sum_{n=2}^{\infty} \frac{xe^{-nx}}{Logn}$$
.

- 1°) Montrer que la fonction f est définie sur $[0, +\infty[$ (1 point)
- 2°) Etudier la continuité de f sur $[0, +\infty[$ (1 point)
- 3°) Montrer que la fonction f est dérivable sur $]0, +\infty[$ (1 point)
- 4°) Montrer que f n'est pas dérivable en 0. (1 point)